n^2+1=156

Simple and best practice solution for n^2+1=156 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for n^2+1=156 equation:



n^2+1=156
We move all terms to the left:
n^2+1-(156)=0
We add all the numbers together, and all the variables
n^2-155=0
a = 1; b = 0; c = -155;
Δ = b2-4ac
Δ = 02-4·1·(-155)
Δ = 620
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{620}=\sqrt{4*155}=\sqrt{4}*\sqrt{155}=2\sqrt{155}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{155}}{2*1}=\frac{0-2\sqrt{155}}{2} =-\frac{2\sqrt{155}}{2} =-\sqrt{155} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{155}}{2*1}=\frac{0+2\sqrt{155}}{2} =\frac{2\sqrt{155}}{2} =\sqrt{155} $

See similar equations:

| 2x+83=8x-7 | | 51^2x+17x=0 | | 3p-2=0 | | 5×(2x-1)=11 | | 144=8a*3 | | 3x8÷2+4=4 | | N^-5n=0 | | 0=7x-63 | | (X+3)2=2x+9 | | x2-8x-3=0 | | 24=(x+3)+(x+3)=(x+3) | | 4a=a+21 | | (6x-1)=(4x+6 | | 7y-15y2=0 | | 5a-16=19 | | a/4-8=-2 | | 180-123=x | | x+(x-3)+(x+5)=26 | | 4-9x=58 | | N2+2n-1122=0 | | 5x+30=7x+3 | | 4x+x=6x+9 | | 4(w+2)=14 | | 5d+4=-6 | | 8x+10=4x+7 | | 8x=3(x+6) | | 3x+9-2x+5=6x+4x+7 | | X+2/8=x-5 | | 5(x-5)x=45 | | 10-3•(5-4x)=15x+40 | | 1/4x-1/5(x+1)=3 | | 9y+8=42 |

Equations solver categories